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The normal form of perturbations of a non-linear oscillatory system is defined. The system itself, called the generating system, 
is arbitrary in form. An algorithm is developed that enables one, without touching the generating system, to reduce a perturbation 
to normal form. The Campbell-Hausdorff series, the properties of the ring of asymptotics forms and the explicit solution of the 
homological equation are used to derive a one-dimensional recurrence formula of arbitrary approximation. © 2003 Elsevier Science 
Ltd. All rights reserved. 

Poincar6's normal form methods [1, 2] consists in establishing the simplest form to which a system of 
ordinary differential equations can be reduced in the neighbourhood of an equilibrium position, and 
in presenting an algorithm for this reduction. It is assumed when doing so that the linear part of the 
system has already been reduced to the simplest form, that is, to Jordan form, after which one tries, 
by transformations not affecting the linear part, to eliminate all non-resonant terms. Since there are 
far less resonant terms, the initial system is simplified considerably, as is indeed the main goal of 
Poincar6's method. 

At the same time, a differential system in normal form possesses the extremely important property 
that the vector fields of the linear and non-linear parts commute. Consequently, the non-linear part of 
the system generates the symmetry of its linear part and hence that of the entire system. This property 
is well known [3] and has been effectively used in practice. Being a geometrical property, it is, in 
particular, independent of the specific variables in which the vector fields are described. Hence it follows 
that preliminary reduction of the linear part to normal Jordan form is not necessary if the aim of the 
transformations is to establish the aforementioned geometrical fact. In Poincar6's method, such reduction 
is involved only in the actual procedure of constructing the normal form. 

The method developed below enables the aim in question to be realized irrespective of the specific 
form in which the linear part of the oscillatory system is presented. In addition, it is not assumed that 
one of the parts of the system must necessarily be linear. The algorithm presented is associated with 
a single condition - that the commutator of the perturbation and the generating part of the system 
vanish. 

For differential systems in Hamiltonian form, ideas similar to those described here have already been 
applied [4, 5]. 

Let us consider a system of ordinary differential equations in normal Cauchy form, as follows: 

cbc/dt = X(x, e) = Xo(x) + eX,(x ,  e) (1) 

where x is a real vector of arbitrary dimensionality, and the right-hand side is sufficiently smooth in the 
domain of definition. The real scalar parameter e is assumed to be small. System (1) has the form of a 
pcrturbed system with generating part dx/dt = Xo(x), whose general solution x = t0(t, c), where 
x(0) = ¢, is assumed to be known. The vector field eX,(x, E) is called the perturbation. As usual, we 
are interested in the behaviour of the complete perturbed system in a small neighbourhood of the 
generating system. 

IfX0(x) is a linear function, system (1) corresponds to the system considered the theory of Poincar6's 
normal form after a small scale of measurement has been introduced for the dependent variable: 
x ---) ex. System (1) is more general than in Poincar6's method, because its generating part is non-linear, 
and moreover the small parameter may also be present without preliminary scaling. However, unlike 
Poincar6's method, we shall consider only oscillating generating systems, that is, we shall assume that 
the general solution x = to(t, c) is a conditionally periodic function of time [1]. 
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Definition. We shall say that the perturbation e.X. (x, e) in system (1) is in normal form if the Poisson 
bracket (commutator) of the vector fields Xo(x) and X.(x ,  e) vanishes: 

[Xo(X), X.fx, e)] = o (2) 

Problem. Suppose the perturbation in system (1) does not have normal form. It is required to find a 
change of variables x ---> y which, without changing the generating system, will reduce the perturbation 
to normal form. 

In other words, we are looking for a nearly identical transformation x ---> y which will reduce system 
(1) to the form 

dy/ dt = Yo(Y, e) = Xo(Y)+ eY,(y, e) (3) 

in which [X0(Y), Y.(Y,  e)] = 0. 
In this form, the generating part of system (3) induces the symmetry group of the complete system; 

for this reason, the order of the latter may be reduced. In addition, the principle of separation of motions 
is realizable in system (3). This means that if one knows some particular solution of the added system 

ay/at=er.(y,e) 

in the formy = ~(t), then there is a corresponding solution of the complete system (3) which is obtained 
by simply substituting the solution y -- ~(t) for the arbitrary constants c into the general solution of the 
generating system: y = tp(t, ~(t)). 

The tool we shall use to solve the problem posed above is the theory of local Lie groups [6, 7]. With 
that in mind, the phase flow induced by system (1) will be considered as a one-parameter Lie group 
with operator 

= X(x, e)~x (4) A 

which, in keeping with the form of system (1), will also be expressed as the sum of a generating part 
and a perturbation: A = A0 + A. .  Condition (2), in terms of vector fields, is equivalent to the similar 
condition in terms of operators: [,40, A.]  = 0. 

The change of variables x ~ y will also be sought as a one-parameter Lie group 

y = exp(xU)x, U = Z(x, e)~7 -- (5) 
Ox 

where x is the group parameter and U is its operator. In other words, the change of variables (5) is the 
general solution of the differential system 

dy I d'c = Z(y, ~.), y(O) = x 

The group with operator U transforms the operatorA into an operator B. The relation between these 
three operators is defined by a Campbell-Hausdorff series 

,C 2 

B= a+'c[A, U] + _--:-. [[a, V], U]+ .... 
2! 

(6) 

or, equivalently 
2 

Y(y, ¢)= X(y, e)+ x[X, Z] +--~.w [[X, Z], Z]+ ... 

We define a kth order asymptotic form of the operator U with respect to the small parameter e to 
be any operator Uk which differs from the exact operator by quantities of order e *+1 and higher: 
Uk = U + O(¢k÷l). Similar notation will be used for the other operators, Ak and Bk. 

We recall the main properties of the ring of asymptotic forms. 
1. Addition: (A' + A")k = A~, + A~. The zero element of the ring ofkth order asymptotic forms is any operator 

of order higher than k: Ok = o(ek+l). 
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2. Multiplication: (A' • A")k = A;,. A'~. The unit element is 1 k = 1 + O(e T M )  (the ring of asymptotic forms is 
unitary). 

3. Displacement along the scale of orders: (e s. A)k = e~Ak-s (k - s ~ 0). 

In what follows, we shall consider the problem of successively finding the asymptotic forms of the 
unknown operators B and U, starting from the lowest-order ones. 

Using the properties listed above and also identifying z with e, we can rewrite the infinite 
Campbell-Hausdorff series (6) for the asymptotic forms of vector fields beginning with the lowest order 
as a sequence of finite series 

E2 
Bo=Ao, BI=AI +e[Ao, Uo], B2=A2 +e[AI,UI]+'~.[[Ao, Uo],U o] .... 

k E i 

.... B k = A, +e[Ak_ ~, Uk_l]+ Y. 7[...[Ak_i, Uk_i], Uk_i] .... ] (7) 
i=2  i ..~:,, - . ,  • I times 

In the expression for Bk, consider the term E[Ak_I, Uk-1]. Using the operator of displacement along 
the scale of orders, we can express this term as follows: 

I~[Ak-l, Uk-I ] = ¢[Ak-I - Ao, Uk-I] + e[Ao, Uk-! ] = ~[Ak-I - '40, Uk-2 ] + ~[A0, Uk-I ) 

(we have used the fact thatAk_l -A0 = O(e)). Using this relation, we can rewrite the expression for Bk 
as an explicit one-dimensional recurrence formula 

Bk=E[Ao, Uk_I]+R ~, k=l ,  2 .... (8) 

which enables us successively, beginning with k = 1, to determine all the asymptotic forms of the 
operators B and U up to any necessary order inclusive. Here Rk is an operator expressed only in terms 
of asymptotic forms of U of lower order than Uk-1 

k E i 

R k = a k + (1 - 81k)g[A,_ I - A o, Uk_ 2 ] + ~'. ~...~..ak_ i, Uk_ ~ ], Uk_i] .... ] (9) 
i = 2  " t umes 

(811=I, 81,=0, k>l) 

The operator Rk, which has a central role to play in the recurrence scheme being formulated, will 
be called the resolvent of the scheme. 

Let us consider the first approximation of the normal form 

B l = e[A o, U0]+ At (10) 

In this equation, known as the homological equation [8]. the unknowns are B1 and U0. To find B1, 
consider Eq. (10) along trajectories of the generating system 

dy/dt = Xo(Y), y(O) = c ~ y =9(t, c) (11) 

This means that, assuming that all the operators in (10) are expressed in terms of the variable y, we 
must transform from this variable to the integration constant c according to formula (11). 

The change of variables in the operator A1 is accomplished as follows: 

AI = X,(Y, E)~y =~ ~ = XI(t, c, 8)-~c : ~ =[Aiq~(-t, y)ly=~t,.c)]~c 

The other operators in (10) are transformed similarly, but by assumption the operator B1 commutes 
with the operatorA0 and consequently its form is unaffected by the change of variable: B1 = B1, while 
the operatorA0, U0 along trajectories of the generating system equals the time derivative of the operator 
U0: [A0, U--o] = d'Uo/dt (Ao = Ao). As a result, Eq. (10), in terms of the variables c, becomes 

B 1 = ~.dU 0 / dt + AI (12) 
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Evaluating the time average of this equation, we obtain B1 = (~T1), since B1 is independent of time 
and the average of the derivative vanishes because the solution of the generating system is co_.nditionally 
periodic. Substituting this expression for B1 into formula (12), we obtain an equation for U0 

m 

duo - - - - ~c  e ' d t  = l~ - A l  = - A l ,  At = ) f l ( t ,c ,e)  

where the operator ~1 does not have an average value with respect to time along trajectories of the 
generating system. Integrating this equation, we obtain 

- -  1 - Uo =-;I  ,dt 
or, returning to the original variable y, 

The two operations performed here - evaluating the average, which has made it possible to find a 
first approximation B1 to the normal form, and solving the homological equation - may be combined 
in a single operator, by simply integrating Eq. (12) with respect to time along trajectories of the generating 
system 

I 

I Aldt=tBl  +eUo -~'Uo (13) 
0 

Since B1 = B1 and U0it=0 = U0, it follows from formula (13) that, integrating the known operator 
A1 along the general solution of the generating system, we obtain the desired operator B1 as the 
coefficient of t, and the other desired operator U0 as the time-independent coefficient of e. 

To construct a second approximation of the normal form, we have to apply a change of variables similar 
to the previous one (11) in the next equation of system (7) 

8 2 
B 2 = e[A o, Ul]+ A2 +E[AI -Ao, U0] +-~-[[Ao, U0], U0] 

after which integration with respect to time yields 

t 

R2dt = tB 2 + eU, - e ~  
0 

As in the first approximation, the coefficient of t will be the desired asymptotic form B 2 and the next 
asymptotic form U1 will be the time-independent coefficient of e. The operator R2 is expressed by formula 
(9), in which the operator U0 has already been found (in the preceding step). 

We will now formulate the entire algorithm for constructing an arbitrary approximation to the normal 
form, assuming that all previous ones have already been constructed, i.e. it is required to find B k and 
Uk-b on the assumption that all lower-order asymptotic forms are known. The algorithm contains three 
main steps. 

1. Use formula (9) to compute the resolvent Rk. 
2. Transform to the integration constant c in R k by the formula 

"Rk = [ Rktp(-t, Y)]y=~(t,c) "~c (14) 

3. Find the normal form by averaging (14) with respect to time, which occurs explicitly in it. 

l T 
Bk = <Rk ) = i imr-~ ~ [ "Rk dt 
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4. In the variables c, evaluate the corresponding asymptotic form of the operator of the normalizing 
transformation operator 

5. Transform to the variable y 
b 

Uk_ 3 = Uk_3tp(t, c)Ic--~ot-/.y) by 

Here the algorithm ends; however, as already noted when the first approximation was constructed, 
steps 3--5 may be replaced by a single step: 

6. Evaluate the integral with respect to t Of Rk. The unknowns Bk and Uk-1 will then satisfy the relations 

! 

I ~kdt = tBk + EUk_, - E0"k_, (15) 
0 

if the separation of the terms occurring on the right-hand side is obvious and presents no difficulties. 
The operator Uk-1 we have found is expressed in terms of the space variables y. By formula (5), this 

same operator, written in terms of the space variables x, yields the relation between the variables x 
and y 

y = exp(~Uk_ t)x (16) 

The same operator, written in terms of the variables y, defines the inverse transformation 

x = exp(-eUk_ l )y (17) 

Example. As an example, consider the Van der Pol equation 

5/+x = e(1 -x2)~ 

which, in phase variables, may be written as the system 

xl = x2, ~2 = - x l  + E ( 1 - x ~ ) x 2  (18) 

Consider the following problem: without changing the linear part of this system, in particular, without 
reducing it to Jordan form, find the normal form of the non-linear terms in the sense defined above, 
and also the change of variables required for this. 

The vector field defined by the system is 

XCxz, x2) = Ix2, - xl + e(1 - x?)x2 } 

By (9), the resolvent R1 needed to construct a first approximation is in this case 

? 
R l = a  I = A = y 2 _ ,  -Yl +~( l -y l  2 by2 oYl 

The general solution of the generating system may be written as 

yj =clcos t+c2sint ,  y 2 = - c l s i n t + c 2 c o s t  (19) 

By (14), the operator R1 must be reduced to integration constants (cl, c2) 

- . b b 
R l = R1(y i c o s t - y  2 sm t)-~-- + Ri(y I sint +y 2 cost) 

oc! b 2 

(zo) 

where the variables y in the components of the operator obtained must be replaced by the constants c 
obtained by inversion of formulae (19). The result is 
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~ = rl(Cl, C2, t)~cl + r2(Cl, C2, t) ~c 2 

where 

r/= (-I)/+I c3_ j + 8 c/[4 - Cl 2 - c~ - 4(I- c~_j)cos 2t + (c~ - 3c~_/)COS 4t]- 

-8c3_/[2(2  + (-1)J+l(c 2 - c22))sin 2t - ( - l )  j+l (3c 2 - c2_y)sin 40, j = l, 2 

We now evaluate the integral with respect to t of the operator if, k, implementing the third, last stage 
of the algorithm (formula (15)) 

y2, ] 
£ ,2),  f / =  (-l)/+ly3_ j + ~ y / ( 4 -  y~ - :'2 J = 1,2 

gl(yl,y2)=-~2Y2(8+y~-3y~), g2(yl,y2)=-~2Yl(8-5y21+Ty22) 
m 

Since the operator U0 is of no interest, we shall not write it down explicitly. 
The expression obtained contains complete information on the normal form of the Van der Pol system 

(18) and the appropriate transformation. The normal form is determined by the coefficient of t 

Yl = fl(Yl, Y2), Y2 = f2(Yl, Y2) (21) 

The time-independent coefficient of e defines the transformation operator 

U0=-[gl(Yl ,  Y2)~-~+g2(Yl, Y2) ~-~-2 ] 

By formulae (16) and (17), this operator determines the direct and inverse changes of variables relating 
systems (18-) and (21). In particular, the direct transformation is 

Yl = xl-Eg1(xl,x2), Y2 "= x2-~'g2(xl,x2) 

Remarks. 1. If computations using formula (9) lead to uncertain terms (the zero of the ring of asymptotic forms), 
they must be equated to zero in order to simplify the derivations. 

2. If the generating system is linear and diagonal form, the algorithm yields the usual Poincar6 normal form, 
but via much more economical manipulations than when the known algorithm is used. As already remarked, 
the invariant nature of our algorithm avoids the need to reduce the linear part to diagonal form. However, it 
is convenient to begin the construction of the higher-order approximations with a diagonal linear part, since it is 
more economical to work with exponential functions than with trigonometric functions. 

If the generating system has the form characteristic for single- or multi-frequency systems of the Krylov- 
Bogolyubov method, the algorithm presented above yields the construction of the corresponding averaged systems 
to within any desired approximation [9]. 

3. If the eigenfrequencies of the linear generating system are close to some resonance condition, small 
denominators will appear; such cases should be converted to exact resonance by deleting small linear terms in the 
perturbation. 

4. The need to compute quadratures in the case of the general position may lead to difficulties in using formula 
(15). However, if, as is usually assumed, the differential system under consideration is expressed in polynomial 
form, one has to integrate exponential or trigonometric harmonics, which is easily done. 
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